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Synthesis towards complex bridged alkaloids derived
from diketopiperazines: a cationic cascade approach to

stephacidins, paraherquamides and related systems
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Abstract—Regioselective enolate formation, followed by stereoselective electrophilic quenching of unsymmetrical proline-derived
diketopiperazines (DKPs), enabled the synthesis of variously substituted DKPs, including one substrate which could be further
substituted and cyclised to give the bicyclo[2.2.2]diazaoctane core structure present in paraherquamide and stephacidin natural
products.
� 2006 Elsevier Ltd. All rights reserved.
Brevianamide B (1) and paraherquamide A (2) are
representative members of a significant family of
fungal metabolites, possessed of an unusual bicyclo-
[2.2.2]diazaoctane core structure, which includes the
asperparalines, marcfortines and aspergamides.1 These
compounds combine synthetically challenging struc-
tures, intriguing biosynthetic origins and, in many cases,
potent biological activities (especially anthelmintic and
antinematodal properties). These aspects have been
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probed over many years, most notably by the Williams
group, who have achieved several total syntheses of
the natural products, and have also provided much
detailed evidence for the biosynthesis.2

A recent addition to this family of compounds is stepha-
cidin A (3), a potent antitumour compound produced by
Aspergillus ochraceus WC76466.3 The research group
of Baran has recently achieved the total synthesis of
stephacidin A and congeners, which led to a revision
of the absolute stereochemistry (to that shown above
for 3).4,5

The biosynthetic origin of these compounds involves the
modification of brevianamide F (see 4 below), by indole
reverse-prenylation, and a subsequent intramolecular
Diels–Alder cycloaddition of the pendant prenyl group
onto an aza-diene generated by oxidation of the core
diketopiperazine (DKP).1,2,6 Some aspects of the pro-
posed biosynthesis have been realised by Williams and
co-workers in their synthetic endeavours.2a We became
interested in an alternative access to this type of bridged
structure, which would also originate from a simple
DKP starting material, which is outlined in Scheme 1.

According to this plan, regioselective enolate formation
and substitution would be employed to convert 4 (in
suitably protected form) into 5, where X is a heteroatom
group appropriate for the formation of an N-acylimin-
ium-type of cationic reactive intermediate. Triggering
of cation formation from 5 would enable a cascade
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Scheme 1. Planned cationic cascade route to complex bridged DKPs.
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process in which sequential trapping of cation inter-
mediate 6 by the pendent prenyl group, and then 7 by
the indole, would give the desired polycyclic product 8.
This process appeared to promise an extremely concise
access to natural products, including 1–3, and we could
be assured of the second ‘indole trapping’ step, since
Williams and co-workers had previously demonstrated
the viability of such a cyclisation.2i,j

Surprisingly, given the ubiquity of DKPs and their
derived systems (such as Schöllkopf lactim ethers) in
stereocontrolled processes,7 we could find only a single
report relating to the transformation of proline-derived
unsymmetrical DKPs such as 4, into products with qua-
ternary centres.8 Thus an exploration of the regio- and
stereo-control in the enolate reactions of DKPs such
as 4 appeared a pre-requisite to any total synthesis
adventure. Similarly, the choice of the group ‘X’, the
practicalities of generating the unusual type of cationic
intermediate 6, and the crucial stereochemical outcome
at C-6 (stephacidin numbering) could not be taken for
granted.

Herein, we describe our preliminary results towards
realising this approach, in which we use model LL-proline
derived DKP systems 9 (R = Me, Bn or iPr; P = PMB)
to address the key aspects described above.
N CO2H

R

Boc

PMB

PMBHN CO2H

R

NH2 CO2H

R (i) (ii)

12a R = Me (76%)
12b R = Bn (69%)
12c R = iPr (27%)

11a R = Me (46%)
11b R = Bn (88%)
11c R = iPr (67%)

10a R = Me
10b R = Bn
10c R = iPr

Scheme 2. Preparation of unsymmetrical DKPs. Reagents and conditions: (
1,4-dioxane–H2O (1:1); (iii) LL-proline methyl ester–HCl salt, EDCI, HOBT, E
for 9c).
In initial preparations of appropriate DKPs 9 for this
study, starting from cheap amino acid precursors, we
observed that N-protection of the ring N–H in 9
(P = H) led to significant epimerisation at the proline
residue. Therefore, we adopted a route that combined
the commercially available proline methyl ester with
alanine, phenylalanine or valine-derived partners,
already incorporating the required PMB protection,
Scheme 2.

Initial reductive amination was followed by nitrogen
protection, amide coupling, N-Boc removal, and
thermally induced cyclisation to give the desired DKPs
9a–c.9

We were delighted to find that a range of electrophilic
substitution reactions could be conducted with these sys-
tems, in a highly regio- and stereo-selective fashion,
through the intermediacy of lithium enolates, generated
using LiHMDS, Table 1.10

This brief survey demonstrated that effective alkylation,
acylation, aldol and sulfenylation reactions are viable in
good yields. In all cases, we observed a completely regio-
selective reaction at the proline a-centre and, with the
exception of sulfenylation (compounds 19a–c), all of
the products were isolated as single diastereomers.11
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t3N, CH2Cl2; (iv) HCO2H then reflux in 2-butanol–toluene (xylene used



Figure 1. X-ray structure of 15b (NPMB group has been omitted for
clarity).

Table 1. Alkylation of DKPs 9a–9c
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(i) LiHMDS (1.5-3.0 equiv.)
THF, -78 ºC 

(ii) electrophile

14 - 20

DKP Electrophilea

Allyl bromide Prenyl bromide PhCH2Br EtI NCCO2Et PhSSPhb PhCHO

9a 14a (51) 15a (60) 16a (62) — 18a (83) 19a (52) 20a (63)
9b 14b (71) 15b (82) 16b (62) 17b (56) 18b (69) 19b (60) 20b (57)
9c 14c (73) — 16c (83) 17c (61) 18c (55) 19c (64) —

a Values in brackets are % isolated yields of pure DKP product.
b Products were isolated as mixtures of diastereoisomers.
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Our initial assignment of relative stereochemistry of the
products 14–20 rested on the aforementioned single
precedent for alkylation of an enolate related to 9c.8a

Fortunately, we were able to confirm this assignment
by X-ray crystallography in the case of the key prenyl-
ated compound 15b, required for our cyclisation work,
Figure 1.12

With a model DKP system, equipped with a suitable
prenyl appendage we next explored the installation of
LiLi
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Scheme 3. Sulfenylation and sulfoxide elimination sequence, starting from 1
a second group X, as indicated earlier in Scheme 1,
which would allow cation formation—cyclisation. Ini-
tially, we chose to carry out sulfenylation of 15b (i.e.
X = SPh) to give 22, since this also enabled subsequent
sulfoxide syn-elimination to give exo-benzylidene prod-
uct 23, Scheme 3.

Surprisingly, the enolisation–prenylation was unsuccess-
ful using conventional bases such as LDA, LiHMDS,
KHMDS or nBuLi, and we achieved acceptable results
only by employing the bis-lithiated base 21.13 Product
22 was obtained in good yield as a single diastereomer,
the stereochemical assignment being secured by X-ray
crystallography.14 Sulfoxide elimination proved very effi-
cient, providing 23 as a mixture of geometrical isomers.

Ylidenepiperazine-2,5-diones, such as 23, have been
demonstrated to undergo intermolecular alkene trap-
ping reactions, analogous to the cyclisation that we
planned, under acidic conditions (e.g., with styrenes on
heating with formic acid).15 Unfortunately, treatment
of 23 with a number of acidic reagents, including formic
acid, TFA and mineral acids, led only to the destruction
of the starting material.

We turned instead to the previous reports in which the
substitution of thioether groups on a DKP scaffold
had been accomplished using AgOTf.16 The reaction
of 22 under these conditions gave rise to a single cyclised
product to which we assigned structure 24 by compari-
son of NMR data with those published previously by
Williams and co-workers, Scheme 4.2i,17
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Pleasingly, the relative configuration of this product at
C-6 is correct for the synthesis of paraherquamide and
stephacidin natural products; the absolute stereochemis-
try is opposite to that of our prime targets, the stephaci-
dins, following the aforementioned revision.

Finally, we also developed a novel one-pot transforma-
tion of 15b, to give the same tricyclic DKP product 24,
by sequential treatment with base 21, electrophilic
fluorinating agent FN(SO2Ph)2, and then trimethyl-
silyltriflate.18

The success of this strategy makes available bridged
DKP 24 in only six steps from the starting commercial
phenylalanine 10b, and has the potential to deliver the
indole analogue 8 in a similarly concise fashion. We
anticipate applying this strategy to the synthesis of
members of the important paraherquamide and stepha-
cidin natural product families, and their analogues, and
we are actively pursuing these objectives.
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66.1 (C), 68.6 (C), 114.0 (Ar, CH), 116.3 (C@CH2), 126.1
(Ar, CH), 128.4 (Ar, CH), 128.9 (Ar, CH), 129.2 (Ar, CH),
130.5 (Ar, C), 136.7 (Ar, C), 142.8 (H2C@C), 159.0 (Ar,
C), 167.2 (C@O), 173.7 (C@O); m/z (EI) C27H31N2O3

requires 431.2335, found [MH]+ 431.2302.
18. This procedure was based on related N-acyliminium

chemistry of DKPs, reported by Davies and co-workers,
see for example: Bull, S. D.; Davies, S. G.; Garner, A. C.;
Savory, E. D.; Snow, E. J.; Smith, A. D. Tetrahedron:
Asymmetry 2004, 15, 3989; For related work, see: Bull, S.
D.; Davies, S. G.; Garner, A. C.; O’Shea, M. D.; Savory, E.
D.; Snow, E. J. J. Chem. Soc., Perkin Trans. 1 2002, 2442.
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